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Abstract 

Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in clinical practice. Over 

decades of research, a vast amount of knowledge has been gathered about the causes and consequences of AF 

that, it occurs and maintains itself in the context of a morphologically and functionally altered atrial substrate 

that can be induced by stressors such as underlying diseases (cardiac or non-cardiac) or aging. Accumulating 

evidence indicates that inflammation, oxidative stress, obesity and insulin resistance may play a central role in 

the pathogenesis of AF. There are several traditional methods to slow it through affecting these aforementioned 

factors. However, a more effective way of treatment and prevention of the progression of AF still under research. 

Fibroblast growth factor 21 (FGF21) is an endocrine hormone that is expressed in numerous tissues, including 

liver, heart, brown adipose tissue, white adipose tissue (WAT) and pancreas. It increases insulin sensitivity and 

regulates lipid metabolism and energy homeostasis. Evidence has supported this statement that FGF21 acts as a 

metabolic regulator and exerts cardio-protective effects. Here, we hypothesize that FGF21 may be a protective 

factor in AF by attenuating inflammation, oxidative stress, obesity, and insulin resistance. This review aimed to 

investigate new ways to understand the pathogenesis of AF and help to find a new way to prevent the genesis 

and progress of AF. 
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1. Introduction  

 

Atrial fibrillation (AF) is a disorder of the 

heart’s electrical conduction system that leads to a 

fast and irregular heart rhythm. The condition is a 

growing epidemic and a major public health 

problem, in addition to being the most common 

cardiac rhythm disorder. The prevalence of AF in 

the general population ranges from 2.3–3.4% and 

is expected to double by 2050 (1).  

Table 1 Genes which are associated with atrial fibrillation Familial studies.

Gene Chromosomal 

location 

Function  Reference 

ABCC9 12p12.1 ATP binding cassette leads to loss of function of IKATP (2-4) 

GJA5 1q21.2 Mutations in this gene may be associated with atrial fibrillation (5-7) 

KCNA5 12p13.32 Modulation of ultra-rapid depolarizing current IKur (8-10) 

KCNE2  

 

21q22.11 Gain of function mutation of the potassium channel 

responsible for the IKs current 

(11, 12) 

KCNH2 7q36.1 Encodes for the channel responsible for the rapidly 

depolarizing current Ikr 

(13-15) 

KCNJ2 17q24.3 Encodes for the inward rectifier potassium channel Kir 2.1 (13, 16, 17) 

KCNQ1 11p15.5-p15.4 Gain of function of potassium channel contributing to Iks (14, 18, 19) 

LMNA 1q22 Laminin A/C in inner nuclear membrane (20-22) 

MYL4 

 

17q21.32 This gene encodes a myosin alkali light chain that is found in 

embryonic muscle and adult atria. 

(23, 24) 

NKX2-5 

 

5q35.1 This gene encodes a homeobox-containing transcription factor, 

functions in heart formation and development. 

(25, 26) 

NPPA 1p36.22 Frameshift mutation causes ANP to be resistant to breakdown 

increasing its half life 

(27) 

NUP155 

 

5p13.2 Nucleoporin 155, a component of the nucleopore formation 

reducing nuclear envelope permeability 

(28) 

PRKAG2 7q36.1 ϒ2 subunit of AMP-activated protein kinase which regulates 

ATP generation and use. 

(29) 

RYR2 1q43 Alteration of ryanodine receptor 2 leading to imbalance of 

calcium homeostasis 

(30-32) 

SCN1B 

 

19q13.11 Voltage-gated sodium channels are heteromeric proteins that 

function in the generation and propagation of action potentials 

in muscle and neuronal cells. 

(33, 34) 

SCN2B 11q23.3 The protein encoded by this gene is the beta 2 subunit of the 

type II voltage-gated sodium channel. 

(35, 36) 

SCN3B 

 

11q24.1 Voltage-gated sodium channels are responsible for the 

generation and propagation of action potentials in neurons and 

muscle 

(37, 38) 

SCN4B 11q23.3 β subunit of the voltage gated sodium channel (39) 

SCN5A 3p22.2 These channels play a major role in signaling the start of each 

heartbeat, coordinating the contractions of the upper and lower 

chambers of the heart, and maintaining a normal heart rhythm. 

(40) 
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However epidemiological studies of worldwide 

shows, the etiology of AF are broadly 

cardiovascular and non-cardiovascular (41, 42), and 

the risk factors for AF were primarily age (43), 

followed by hypertension, peripheral vascular 

disease diabetes mellitus and body mass index (44-

46). Other risk factors include chronic kidney 

disease, smoking, alcohol, and thyroid dysfunction 

(47). Moreover, evidence from genetic study 

release that it is a heritable component, family 

history is a big risk factor for AF. And a study of 

more than 2,200 people found an increased risk 

factor for AF of 1.85 for those that had at least one 

parent with AF. Various genetic mutations may be 

responsible (30, 48-51) (Table 1). Where AF 

contributes to increased mortality and morbidity, 

especially from stroke (47, 52-58), myocardial 

infection and other heart-related complications (59).  

In the initial stage of atrial fibrillation there are no 

signs and symptoms but with the complication of 

the disease there are signs and symptoms such as 

palpitations, angina, dizziness, Dyspnea, fatigue or 

weakness (57, 60) but the most common is rapid 

heart rate (41, 55, 56, 61-63). 

Cardiac arrhythmias have been treated 

traditionally with antiarrhythmic drugs that control 

the rhythm by altering cardiac electrical properties, 

and anti-inflammatory drugs (53). Catheter ablation 

is also considered as the antiarrhythmic drugs for 

maintaining the sinus rhythm (64-66). But it was 

also seen that after using these medications and 

therapies problems still be there because the 

medications and therapies also have some 

complications (66, 67). 

Fibroblast growth factor-21 (FGF-21) has been 

discovered as a strong hormone (68-70), plays an 

important role in lipid metabolism, glucose 

metabolism (71-73) and also involved in cardio-

protective function by performing the anti-

pathogenic activity (74). 

In this review, we will investigate new ways to 

understand the pathogenic mechanisms involved in 

this disorder. As well as an outlook for the 

therapeutic potential of FGF21 in atrial fibrillation 

through regulating atrial metabolic remodeling. 

 

2. Pathogenesis of Atrial fibrillation 

 

2.1. Inflammation 

 

Inflammation is considering one of the most 

important pathogenic factors of AF which might 

play a significant role in the initiation, maintenance, 

and perpetuation of AF (75-79). The main 

pathophysiology mechanism involves in developing 

and progress of AF is electrical and structural 

remodeling of atria (76, 80). Moreover, atrial 

fibrillation itself induces inflammation during atrial 

remodeling which perpetuates the arrhythmia and 

this is called ‘AF begets AF’ phenomenon (64). 

Multiple contributing factors are associated with 

the initiation of local and systemic infection which 

might have an underlying mechanism and temporal 

changes. Different systemic diseases such as 

coronary artery disease, hypertension, obesity, 

myocarditis and pericarditis (58, 77, 81). 

Corresponding to the infection body produces an 

inflammatory response, the systemic response 

includes cytokines which are produces by the 

activated immune cells such as lymphocytes, 

monocytes, and macrophage (53, 82, 83). These 

cells produce the pro-inflammatory cytokines such 

as TNF-α, IL-2, IL-6, IL-8 IL-13,  

IL18, C-reactive protein (80, 84-87).  High level 

of cytokines can reach to atria by the circulation or 

in another way, cause the inflammation of the 

myocardium and also lead to severe atrial and 

ventricular arrhythmias by disturbed the resting 

membrane potential by activation of potassium 

channel (81, 88-90). Moreover, they induce L-type 

calcium channel those are also involved in causing 
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arrhythmias (46, 53, 91). Also due to myocardial 

injury may be to release of cytokine mediators 

and/or cellular components of the immune response 

(53). According to some medical research in mice, 

cardiac-specific expression of TNF or TGF-β1 can 

increase the vulnerability to AF and atrial remod-

eling (92, 93), including fibrosis and heterogeneous 

conduction (94, 95). The higher level of TNF-α, IL-

6, IL-13, IL-18, and a cytotoxic factor which 

increases vascular permeability and shock (96-100). 

However, these all condition might lead to 

myocardial cell apoptosis, fibrosis, and myocardial 

remodeling. Furthermore, in low-grade chronic 

inflammatory such as C- reactive protein cause the 

atherosclerosis complication and inflammation 

(101-105). And recent studies suggest that 

atherosclerosis is a systemic inflammatory process 

affecting the media and intima layer of arteries (82, 

98, 106-109). While inflammation is a strong 

predictor of AF by various population-based 

studies(110). Atrial fibrillation/flutter (AF/FL) is a 

common complication of acute myocardial 

infarction (AMI) (110-112). As evidenced by 

previous studies it was clear that AF plays a more 

important role occurring specifically in an 

inflammatory environment (93, 113). And it is 

expected to induce myocardial damage and atrial 

inflammation during the healing process, and might 

consequently induce AF (87, 98, 99, 114, 115). In 

addition ischemia cause ventricular arrhythmia that 

can lead to elevated left ventricular (LV) end-

diastolic pressure (116), increased atrial pressures, 

acute deterioration of the LV function, left atrial 

(LA) enlargement (79, 115, 117). This anatomical 

LA enlargement increases the possible number of 

multiple wavelets and may precipitate better 

initiation and maintenance of AF under the hostile 

environment of AMI such as left ventricular systolic 

function problem, exaggerated inflammatory 

reaction (117, 118) (Figure 1). 

 

2.2. Oxidative stress  

 

Oxidative stress has been suggested to play a 

role in the pathogenesis of atrial fibrillation (AF). 

Indeed, the prevalence of AF increases with age as  

does oxidative stress. Further study showed that 

oxidative stress markedly elevated in preclinical and  

clinical AF patients (119-122). However, 

investigation about the possible mechanism in 

oxidative stress may involve the destruction of the 

cell membrane and cytoskeleton alteration. Growing  

evidence indicates that many oxidative markers are 

increased in the AF patient, including protein 

oxidation, lipid peroxidation and nucleic acid 

oxidation (123, 124). Reactive oxygen species 

(ROS), which are cytotoxic byproducts of oxygen 

metabolism, are driven from the multiple sources 

such as mitochondria, xanthine oxidase, ischemia-

reperfusion (I/R), uncoupling nitric oxide synthase, 

and NADPH oxidases (125, 126). In AF, an 

increasing the rate of oxidative stress will finally 

cause the necrosis, cell dysfunction, apoptosis, and 

disturbance in cellular signaling mechanism. In 

addition, vivo study shows that ischemia-

reperfusion I/R increase a process autophagic flux 

in cardiac myocytes through oxidative stress (127, 

128). Because of these, structural and electrical 

remodeling of the cardiac atria will be developed, 

structural and electrical remodeling of the cardiac 

atria will develop. A scientific study shows that 

there is linked to inherited mutations in the 

intracellular Ca2+ release channel/ryanodine 

receptor (RyR2) that cause intracellular Ca2+ leak. 

Altered intracellular Ca2+ homeostasis has been 

associated with the pathogenesis of AF. The 

ryanodine receptors (RyRs: RyR1, RyR2, RyR3) 

and inositol 1, 4,5-trisphosphate receptors (IP3Rs: 

IP3R1, IP3R2, IP3R3) are the major calcium Ca2+ 

release channels (CRCs) on the endo/sarcoplasmic 

reticulum (ER/SR)(129). Oxidation of RyR2 will 

lead to intracellular oxidative stress in the atrial 

https://en.wikipedia.org/wiki/Ischemia
https://en.wikipedia.org/wiki/Ventricular_arrhythmia
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myocytes, then calcium starts to leak from the 

sarcoplasmic reticulum resulting promote the 

increase in cellular electric activity. And atrial 

myocytes from both patients and animals with AF 

display increased diastolic SR Ca2+leak via RyR2. 

Moreover phosphorylation of protein kinase A 

(PKA) or catecholaminergic polymorphic 

ventricular tachycardia (CPVT) mutations (130, 

131), trigger a vicious cycle in which leakage of 

calcium from sarcoplasmic reticulum of atrial 

myocytes impair the function of mitochondria, that 

cause the increased production of reactive oxygen 

species and ROS will promote the RyR2 oxidation 

that will lead to  further leak of calcium Ca2+ and 

again severity of AF will increase (132) (Figure 2). 

 

Figure 1. The potential mechanisms of inflammation in AF and the potential targets of FGF21.  

1) Inflammation drives from the systemic and non-systemic sources, which is detected by the Immune cell 

(Macrophage). This Immune cell (Macrophage) secrete the Pro-inflammatory cytokines. 1) The increased level 

of cytokines causes the inflammation, it is the most important pathogenic process for causing AF, by abnormal 

calcium distribution in myocardial cells that can disturb the action potential of the myocardiocyte cell 

membrane. Which leads to the Conduction heterogeneity, here this is a point where electrical and structural 

remodeling happened. And cardiac cell remodeling continuous process towards AF. 2) The increased cytokines 

level also have the direct ability to cause the myocardiocyte fibrosis. After fibrosis, the speed of heart electrical 

conduction system slow, that can lead to the Conduction heterogeneity, cardiac cell remodeling and then cause 

the AF. 3) some pathologic conductions such as increase apoptosis, myolysis and increase level of 

Cardiomyocyte which make atria dilate and then after remodeling AF occur. 4) FGF21 can decrease the severity 

of inflammation and cardiac remodeling decreasing the cytokines level and decease the cardiac cell apoptosis. 
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2.3.Obesity 

 

Obesity is associated with a new one set of atrial 

fibrillation (112, 133), is the most common 

postoperative arrhythmia (134) in the general 

population or following the cardiac surgery (135-

137). 

 

Figure 2. The potential mechanisms of oxidative stress in AF and the potential targets of FGF21.  

1) Oxidative stress is another pathogenic for AF, it produces multiple pathways.1) From oxidative stress, ROS 

are produced that can damage the mitochondrial membrane, Due to mitochondrial membrane damage 

cytochrome C release. That is a protein which activates Casepase-9 and Casepase-9 activate the Casepase-3. 

Finally, after activation of this apoptosis occur that can cause the AF. 2) The oxidative stress also causes that 

oxidation of proteins, lipids and nucleic acid of a cell. Oxidation of them leads to damage of cell membrane that 

can cause RyR2 dysfunction. Because of this alter the calcium handling, then electrical remodeling occurs. In the 

end, the wavelength becomes short and develop the AF. 3) Moreover, ROS are directly involved in calcium 

alteration which leads to AF.4) FGF21 can upregulate the expression of genes encoding proteins involved in 

antioxidative pathways, including mitochondrial uncoupling proteins (Ucp2 and Ucp3), superoxide dismutase-2 

(Sod2), reduced ROS production.FGF21 can decrease cardiac cell apoptosis. 

 

However, according to WHO obesity is defined 

as a person with a body mass index (BMI) of 30 or 

more. For a person with a BMI equal to or more 

than 25 the main source of energy for heart muscles 

is adipose tissue (138), that is accumulated mainly 

around the atrioventricular and interventricular 

grooves and along the coronary arteries; the smaller 

amount is also seen on atrial appendages. 

The cardiac adipose tissue is composed of the 

paracardial fat outside the visceral pericardium and 

the epicardial adipose tissue (EAT) adjacent to the 

epicardium (134, 139, 140). In addition, it was 

suggested that EAT produces the number of 
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bioactive substance (adipokines) with both pro-

inflammatory and anti-inflammatory properties, that 

can freely diffuse into the neighboring myocardium 

(141-143). 

Previous studies have highlighted obesity as an 

independent risk factor for the new onset of AF 

(143). While a recent study shows that obesity 

doubled the risk of the occurrence of AF among 

healthy young women, In addition, duration of 

elevated BMI had also an impact on the risk of a 

new incident of AF (144). In the obese patient, 

overweight. Besides, The Framingham Heart Study 

showed that increased atrial fat volume was 

associated with a high risk of AF (138). Although  

 

Figure 3. The potential mechanisms of Obesity in AF and the potential targets of FGF21.  

Over bodyweight is a metabolic disease and becoming a worldwide health problem, and it is a most important 

pathogenic factor for AF. 1) In this condition FFA are increased in circulation that can produce the ROS, 

a) The increased level of ROS caused the cardiac cell apoptosis as we discussed in figer-1 

b) Increased ROS production includes oxidized CaMKII (Ox-CaMKII) and activated nuclear 

factor-kB (NF-kB). ox-CaMKII activates ryanodine receptor 2 (RyR2) hyperphosphorylation, which in turn 

causes secondary electrical remodeling and calcium overload-induced cardiac injury. 

Both calcium overload and cardiac cell apoptosis leads to AF. 2) The epicardial adipose tissue (EAT) produces 

activin A that release the cytokines that proceed with the process of inflammation as we explain in figer-1 

3) Cardio-metabolic abnormality developed in obese patients due to Mechanic effects such as Hemodynamics 

and OSA, Ventricular abnormalities happened which cause the atrial remodeling and cardiac hypertrophy, after 

all, AF occurs in patients. 4) FGF21 can decrease the severity of inflammation, oxidative stress and cardiac 

remodeling decreasing the cytokines level and decease the FFA level in circulation, Moreover, it also has an anti-

myocardial infection and anti- Cardiac hypertrophy activity. 
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during the cardiac tissue insult immune cell 

infiltration into the adipose tissue (Pericardial 

adipose tissue (PAT) and Epicardial adipose tissue 

(EAT)), particularly by M1 macrophages (a pro--

inflammatory phenotype), that cause the secretion 

of pro-inflammatory cytokines (145). The high level 

of cytokines can reach to atria from adipose tissues 

by the circulation or paracrine factors and cause  

inflammation that leads to the development of AF 

(64). Establish an inflammatory cycle that leads to 

increased severity of the arrhythmia. Moreover, a 

study reveals that AF is associated with the fibrosis 

of the adipose tissue, which is present in the 

subepicardial of the atrial myocardium in human 

and sheep. Immune response could be involved in 

this remodeling process (143). Several mechanisms 

show the relationship between EAT and AF.  Some 

previous study assessed inflammation of EAT 

gradually lead to AF in patients undergoing cardiac 

surgery (146, 147), because EAT is important local 

source of the inflammatory mediators tumor 

necrosis factor-α, CRP  and interleukin-6, which 

might have direct arrhythmogenic effects on atrial 

tissue and be associated with AF pathogenesis (146, 

148). Moreover, a study documented that EAT 

produces activin A (member of the TGF-beta-

superfamily) more plentiful in the adipose tissue of 

obese (135, 149), compared to lean persons, it 

increases inflammatory cytokines in macrophages, 

these cytokines causes fibrosis in surrounding atrial 

myocardium that might lead to AF (146, 149). 

Furthermore, L-type calcium channel is present in 

myocardiocytes, and the main current generating the 

plateau phase of the atrial action potential, 

influenced by cytoskeleton structural changes 

mediated by gelsolin, where the increasing 

concentration of gelsolin inactivates the channels 

(150). While Gelsolin deficiency could lead to an 

increased opening probability of these Ca2 channels 

leading to increased excitability of myocardiocytes 

that promoting AF (150, 151). 

These above mechanisms might play an 

important role in the formation of the AF substrate 

during the pathogenesis of AF. Therefore, these 

qualitative changes in EAT may be related to higher 

EAT density (Figure 3). 

 

2.4. Insulin resistance 

 

Insulin resistance (IR) is considered as 

a condition in which cells (i.e. muscle, adipose 

tissue, and liver) fail to respond normally to 

circulating insulin (152, 153). To 

prevent hyperglycemia and noticeable organ 

damage over time, the body produces insulin 

when glucose starts to be released into 

the bloodstream (154). 

While in this pathologic condition (insulin 

resistance), the cells are resistant to the insulin and 

are unable to use it as effectively, But  Beta cells in 

the pancreas subsequently increase their production 

of insulin, further contributing to a high blood 

insulin level leading to hyperinsulinemia. A long 

time of insulin resistance often remains undetected 

and can contribute to the development of type 2 

diabetes, obesity or latent autoimmune diabetes of 

adults (155). 

Discussing type 2 diabetes, it is typically a 

chronic disease associated the number of metabolic 

defects including insulin resistance, impaired 

glucose tolerance, pro-inflammatory mediators, 

abnormalities of haemostasis, fibrinolysis, 

angiogenesis and extracellular matrix turnover (133, 

156, 157). All of these metabolic changes lead to 

endothelial dysfunction, abnormal activation of the 

renin-angiotensin-aldosterone system (RAAS) and 

acceleration of atherogenesis, have been implicated 

in AF pathogenesis (158-160). Diabetes could also 

cause structural, electrical, electromechanical and 

autonomic remodeling. Moreover, animal-based 

studies have demonstrated that structural 

remodeling of the left atrium, primarily atrial 

https://en.wikipedia.org/wiki/Adipose_tissue
https://en.wikipedia.org/wiki/Cytokine
https://en.wikipedia.org/wiki/Macrophage
https://en.wikipedia.org/wiki/Cell_(biology)
https://en.wikipedia.org/wiki/Hyperglycemia
https://en.wikipedia.org/wiki/Glucose
https://en.wikipedia.org/wiki/Blood
https://en.wikipedia.org/wiki/Beta_cell
https://en.wikipedia.org/wiki/Pancreas
https://en.wikipedia.org/wiki/Hyperinsulinemia
https://en.wikipedia.org/wiki/Hyperinsulinemia
https://en.wikipedia.org/wiki/Hyperglycemia
https://en.wikipedia.org/wiki/Diabetes_mellitus_type_2
https://en.wikipedia.org/wiki/Diabetes_mellitus_type_2
https://en.wikipedia.org/wiki/Obesity
https://en.wikipedia.org/wiki/Latent_autoimmune_diabetes_of_adults
https://en.wikipedia.org/wiki/Latent_autoimmune_diabetes_of_adults
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dilatation and interstitial fibrosis is the major trigger 

of AF in patients with diabetes (161, 162). In 

addition inflammation oxidative stress, increased 

expression of transforming growth factor and 

changing in gap junction proteins play important 

roles in causing structural atrial remodeling, 

electrical atrial remodeling and atrial fibrosis (163). 

And it has been cleared with multiple proofs that 

these atrial remodeling and atrial fibrosis are 

leading case of AF (163, 164). 

In addition to this, there are numbers of 

researchers demonstrate the prevalence of obesity is 

rising worldwide with a high rate, and severe 

obesity is associated with elevated risks of adverse 

health consequences (165). And Obesity is the 

primary cause of ectopic lipid deposition in the 

heart (166). However, in the case of cardiac 

lipotoxicity, the cardiac myocytes undergo apoptosis 

and contractile dysfunction (167-169). Moreover, 

due to obesity, some different lipid intermediates 

begin to accumulate, including diacylglycerols and 

ceramides. Diacylglycerols responsible for the 

development of myocardial disease including 

cardiac hypertrophy and diabetic cardiomyopathy 

working as lipid second messengers that can 

activate several isoforms of PKC, whereas 

ceramides function as key components of lipotoxic 

signaling pathways linking lipid-induced 

inflammation and inhibition of insulin signaling 

(170-172). These pathological conditions are the 

leading cause of AF. 

Insulin resistance is the leading step of 

cardiovascular complications including ischemic 

heart disease and stroke (173). Moreover, It 

https://en.wikipedia.org/wiki/Cardiovascular_disease
https://en.wikipedia.org/wiki/Ischemic_heart_disease
https://en.wikipedia.org/wiki/Ischemic_heart_disease
https://en.wikipedia.org/wiki/Stroke
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Figure 4. The potential mechanisms of insulin resistance in AF and the potential targets of FGF21. 

1)The insulin resistance causes the lipolysis which causes the increase in the level of FFA. And endothelial No 

develops the Atherosclerosis due to Vasodilatory reserve action continue to this CHD and H.T start later AF also 

develop. 2) in insulin resistance obesity leads to the hyperglycemia which causes to the DM that leads to the 

oxidative and inflammation which develop the AF as we illustrate in figure-2. 3) Free fatty acids (FFAs) lead to 

activation of IKK, the inhibitor of IkB kinase. KK phosphorylates the inhibitor of kB(IkB), causing it to become 

detached from nuclear factor kB (NF-kB). NF-kB enters the nucleus and induces transcription of pro-

inflammatory cytokines such as IL-6 and TNF-a. These cytokines lead to the deterioration of insulin resistance. 

4) FGF21 can decrease the severity of inflammation, oxidative stress and cardiac remodeling decreasing the 

cytokines level and decease the FFA level in circulation, Moreover, it increases the glucose uptake by the cell. 

 

represents a cluster of atherogenic risk factors 

including hypertension, atherosclerosis, 

hyperglycemia, obesity, and dyslipidemia (174). 

Considering that all of these risk factors could 

influence the development of atrial fibrillation 

(173). And also an association between atrial 

fibrillation and the insulin resistance has been 

suggested (174). Additionally, under insulin 

resistance oxidative stress and inflammation have 

been playing a major role in the pathogenesis of 

atrial fibrillation (175). By increasing the level of 

some cytokines such as interleukin-1 and CRP and 

reactive oxygen species (ROS) which enhance the 

pro-inflammatory responses in my myocardial cells 

which give the result in the form of myocardium 

remodeling, enlargement of the atrium, and 

autonomic neuropathy and this thing will promote 

the occurrence of atrial fibrillation (176, 177). 

Because of Diabetic autonomic neuropathy (DAN), 

a significant increase in P-wave duration and 

dispersion was observed. Metabolic syndrome is a 

risk factor for insulin resistance also having a 

significant clinical relationship with atrial 

fibrillation (125, 178, 179). 

However, the Framingham heart study didn’t 

find any relationship between the atrial fibrillation 

and the expression of insulin resistance during an 

analysis of 3,023 middle-aged to elderly participants 

(hazard ratio 1.18, 95% CI 0.84-165,p=0.34)(180). 

Insulin resistance itself does not directly lead to the 

development of AF. But its complication may lead 

to AF such as diabetic cardiomyopathy, directly or 

indirectly (Figure 4). 

 

3. Fibroblast growth factor 21(FGF21) in Atrial 

fibrillation. 

 

FGF21 is a signaling protein which is the 21st 

most important member of the FGF family (181-

183). It is composed of approximately 150 to 300 

amino acid (183, 184). The main site for the 

production and release of FGF21 is considered to 

the liver (185) or isolated hepatocytes, but other 

numerous tissues such as brown adipose tissue, 

white adipose tissue, Brain, and pancreas, are also 

associated with the production and section of 

FGF21(68).In addition skeleton muscle also express 

the FGF21.while the circulating level of FGF21 is 

mainly driven from the liver. But the expression of 

the FGF21 is under control of the peroxisome 

proliferator-activated receptor-alpha (PPAR alpha) 

and levels rise substantially with both fasting and 

consumption of ketogenic diet (68, 186, 187). Its 

play an important role in regulating adaptation to 

various metabolic abnormalities (188). Acting as 

endocrine FGF21 promote the glucose uptake of 

glucose by white adipocytes through induction of 

the glucose transporter, GLUT1 (189). 

It can act as either endocrine or exocrine. For 

the Endocrine and paracrine signaling 

https://en.wikipedia.org/wiki/Hyperglycemia
https://en.wikipedia.org/wiki/Brown_adipose_tissue
https://en.wikipedia.org/wiki/White_adipose_tissue
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transformation, mostly every member of the FGF 

family have the FGF receptors (FGFRs). FGFRs 

Include 1b,1c,2b,2c,3b,3c and 4 with different 

ligand-binding specificities(190). FGFs are 

activated when FGF21 bind to the fibroblast growth 

factor receptors(FGFRs) and its co-receptor β-

klotho (KLB) a single-pass transmembrane protein 

that functions as an obligate cofactor for FGF21 

signaling (70, 189-192). 

 

3.1 FGF21 and inflammation 

 

Increasing evidence demonstrated that 

inflammatory process plays a critical role in AF 

progression (56, 99). However, FGF21 has 

demonstrated an anti-inflammatory role in the 

inflammatory processes of the cardiac cell (193). 

Moreover, recent studies have demonstrated that 

FGF21 plays an important role in cardiac 

remodeling (194-196). FGF21 have an anti-

inflammatory role in the cardiac cell, it acted as a 

positive acute phase response (APR) polypeptides 

and protect the cardiac cell from stress (68, 193). In 

addition, the inflammatory cytokines such as 

interleukin- 6 (IL-6), and monocyte chemoattractant 

protein-1 (MCP-1) were significantly higher in 

FGF21 knockout mice (193). While in db/db mice 

models, FGF21 treatment significantly reduced the 

mRNA expression level of TNFα (197). 

Furthermore, FGF21 treatment prevents cardiac 

hypertrophy development (at least, in neonatal 

mouse models), enhances fatty acid oxidation, and 

prevents the induction of pro-inflammatory 

pathways in the heart, thereby confirming (195). 

Research shows a significant amount of both FGF21 

receptor, FGFR1, and the co-factor, β-Klotho, are 

present at the protein level in cardiac cells (189). It 

was found for treatment of cardiomyocytes in 

culture with FGF21 to activate the extracellular 

signal-regulated kinase (ERK) signaling pathway, 

which is considered the main intracellular pathway 

responsible for FGF21 intracellular actions (195). 

Other studies have reported that FGF21 also exerts 

protection after myocardial infarction by inhibiting 

cardiomyocyte apoptosis (198-200) (Figure 1).  

The relationship between FGF21 and coronary 

heart disease is interest reported that serum FGF21 

level was positively associated with coronary artery 

disease in clinics (201, 202). FGF21 plays an 

important role in the regulation of lipid metabolism 

and anti-inflammatory activity (203). Clinical 

studies showed that increased circulating FGF21 

levels were discovered in atherosclerotic patients or 

individuals with a high risk of developing 

atherosclerosis (202). Also, an in vivo study 

demonstrated that increased serum FGF21 was 

observed in aortas of apoE−/− mice (C57BL/6J 

background) (204). While another study indicated 

that FGF21-induced prevention of atherosclerosis 

was associated with suppression of endoplasmic 

reticulum stress-mediated apoptosis in apoE−/− 

mice (C57BL/6J background) (204, 205). Moreover, 

it is clear that exogenous of administration FGF21 

significantly improved lipid metabolic disorders and 

reduced atherosclerotic plaque areas in these 

animals (206). 

FGF-21-induced anti-oxidative function by 

increased levels of superoxide dismutase reduced 

glutathione and reduced malondialdehyde in Wistar 

rat (207). It has been reported that through an AMP-

activated protein kinase- (AMPK-) dependent 

pathway in endothelial cells FGF21 prevent high 

glucose-induced cell damage and endothelial nitric 

oxide synthase dysfunction (208, 209). 

Myocardial infarction (MI) is an established risk 

factor for atrial fibrillation (AF) (209).In response 

to myocardial Ischemia, adipocytes derived FGF21 

was up-regulated and secreted into the circulation in 

the C57BL/6J mouse (210). After interacting with 

FGFR1 in cardiomyocytes in the presence of 𝛽-

klotho, FGF21 activates its downstream kinases and 

proteins including phosphatidylinositol 3-kinase 
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(PI3K), protein kinase B (PKB/AKT), and Bcl2 

antagonist of cell death (BAD), thereby reducing 

myocardial ischemia-induced apoptosis 

characterized by a reduction of caspase-3 activity 

(211). The moreover myocardial ischemic size was 

significantly smaller in FGF21 transgenic mice than 

that in wild-type mice (210) (Figure 2). 

 

3.2.Oxidative stress and FGF21 

 

Accumulating evidence suggests that oxidative 

stress plays a pivotal role in the development and 

perpetuation of AF (212, 213). In response to 

cardiac insults such as oxidation, cardiomyocytes 

induce the expression of FGF21 by the Sirt1–

PPARα pathway (212, 214, 215). Recent researches 

have been shown that FGF21 involves in regulating 

oxidative stress (216). It demonstrated the 

expression of genes encoding proteins involved in 

antioxidative pathways, including mitochondrial 

uncoupling proteins (Ucp2 and Ucp3), superoxide 

dismutase-2 (Sod2), reduced ROS production in 

cardiomyocytes, and ameliorated cardiac tissue 

injury (189). Moreover, FGF21 gene expression is 

induced by pro-oxidative stimuli, establishing a 

feedback loop whereby the pro-oxidative stimuli 

themselves enhance the production of Fgf21, which 

confers local protection against ROS formation (196, 

217, 218). Therefore, FGF21 stimulates an 

endogenous antioxidant response in cardiac tissue 

by acting in an autocrine manner. Other studies 

have reported that FGF21 also exerts protection 

after myocardial infarction by inhibiting 

cardiomyocyte apoptosis (189). The transcription 

factor, ATF4, might also be involved in the 

transcriptional control of cardiac FGF21 expression 

in response to mitochondrial dysfunction or ER 

stress situations (219, 220). Most studies have 

proposed that binding of ATF4 to the FGF21 gene 

promoter controls FGF21 gene transcription in the 

heart and skeletal muscle in response to signals 

elicited by mitochondrial dysfunction and ER stress 

(219). However, an ATF4-mediated pathway of 

FGF21 induction by mitochondrial dysfunction 

involving increased ROS production has been found 

in skeletal muscle (190, 221). From these pathways, 

FGF21 may involve cardiac protection from 

oxidative stress by producing SOD and activation of 

other anti-oxidative genes. 

 

3.3.FGF21 and obesity 

 

Increasing evidence demonstrated that obesity 

plays a critical role in AF progression (160, 210). 

AF is an obesity-associated disease, and the risk of 

AF increases progressively with rising BMI, 

metabolic disturbance, progressive insulin 

resistance, activation of the systemic and cardiac 

oxidative stress processes, activation of the pro-

inflammatory cytokines, increased BP, cardiac 

mitochondrial redox dis-homeostasis and structural 

changes (160, 222). While several studies show that 

these all risk factors are highly associated with a 

disturbance of cardiac arrhythmia (145, 223). 

However, FGF21 is recognized as a powerful 

metabolic regulator (203, 224). In addition, long-

term FGF21 administration can reverse the adverse 

effects of obesity by decreasing metabolic 

disturbance, systemic and cardiac oxidative stress 

and cardiac mitochondrial redox dis-homeostasis 

and structural changes (217, 223, 225-227). It also 

leads to decreased pro-inflammatory cytokines, 

reduced BP, thus attenuating FGF21 resistance in 

the heart, and finally leading to the restoration of 

arrhythmia(228). The high levels of plasma FGF21 

observed in the HFF group were due to the 

exogenous FGF21administration (195). Moreover, 

the exogenous FGF21 administration has been 

shown to cause an up-regulation of the FGF21 

synthesis, which might even lead to a further 

increase in the FGF21 level in the bloodstream, 

finally increase the level of FGF21 is involved in 
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lipid metabolism in modulating cardiac lipid 

metabolism and homeostasis (193). Furthermore, in 

WAT the FGF21 expression is regulated by PPARγ 

in response to fatty acids (228). In the heart, FGF21 

is expressed and produced in response to insults 

promoting cardiac hypertrophy and oxidative stress, 

as part of a cardioprotective response (212). During 

fasting conditions, peroxisome-proliferator-

activated receptor-α (PPARα) induced hepatic 

FGF21 production which in turn is activated by 

derivatives of non-esterified fatty acids released into 

the circulation by lipolysis in WAT (212, 228, 229). 

From the above evidence, it might give the 

relationship that FGF21have a therapeutic potential 

effect against obesity and its complications. The 

epicardial adipose tissue has been previously 

identified as a source of inflammatory mediators 

under basal condition and cardiac surgery increased 

mRNA expression of pro-inflammatory cytokines in 

both epicardial and subcutaneous adipose tissue 

(141, 230). A study demonstrated that circulating 

FGF-21 levels and its mRNA expression in 

epicardial adipose tissue are markedly increased by 

cardiac surgery (230). These findings suggest that 

FGF21 may reduce body mass index and 

inflammation. 

 

3.4.Insulin resistance and FGF21 

 

Increasing evidence from update research 

demonstrate that insulin resistance is closely related 

to the pathologic process of AF(174). FGF21 acts as 

one of the metabolic regulators. It has been 

demonstrated as a potent regulator of glycemia, 

lipid metabolism and energy homeostasis (231-233). 

Several findings provide physiological and 

molecular evidence that FGF-21 functions as a 

pleiotropic hormone-like protein, improve whole-

body insulin sensitivity and reduce plasma levels of 

glucose and triglycerides in the diabetic monkey 

(203, 234). Moreover, in mouse 3T3-L1 adipocytes 

FGF21 stimulate glucose uptake and in primary 

cultures of human adipocytes (235). While 

administration of recombinant FGF21 to obese, 

insulin-resistant ob/ob or db/db mice or Zucker 

diabetic fatty rats caused similar effects, which 

include reductions in plasma glucose and insulin 

concentrations (236). From the above discussion, it 

might show that FGF21 can potentially protect the 

heart through improving insulin resistance and 

prevent the development of AF. 

 

4.Conclusions 

 

The worldwide prevalence of atrial fibrillation is 

increasing rapidly, culminating in a significant 

financial and resource burden on the various health 

care systems and health professionals. Although in 

recent years there has been a moderate increase in 

the number of available treatments, including the 

antiarrhythmic drugs, anti-inflammatory drugs, and 

Catheter ablation. But all these medications and 

therapies have multiple complications. 

In this article, we have discussed the pathogenic 

factors mainly included inflammation, oxidative 

stress, obesity, and insulin resistance. All the 

pathogenic factors using several mechanical and 

cellular pathways to cause the AF. However here 

we have hypothesized that the FGF21 acts as an 

FGFR-dependent manner with b-Klotho as a 

cofactor hormone, that may be working as a 

protective factor in AF by attenuating inflammation, 

oxidative stress, Obesity, and insulin resistance. It 

may be a potential therapeutic for AF. 
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